Rollett, J. S. (1965). Editor, Computing Methods in Crystallography, p. 40. Oxford: Pergamon Press.
Rollett, J. S. \& Carruthers, J. R. (1975). Private communication.
Spivack, B. \& Dori, Z. (1975). Coord. Chem. Rev. 17, 99136.

Spivack, B., Dori, Z. \& Steifel, E. I. (1975). Inorg. Nucl. Chem. Lett. 11, 501-503.

Waser, J. (1963). Acta Cryst. 16, 1091-1094.
Watson, H. C., Shotron, D. M., Cox, J. M. \& Muirhead, H. (1970). Nature (London), 225. 806-811.

Acta Cryst. (1978). B34, 3591-3593

The Crystal Structure of Tris(oxamide oxime)cobalt(III) Trichloride, $\mathrm{Co}\left(\mathrm{C}_{2} \mathbf{H}_{6} \mathbf{N}_{4} \mathrm{O}_{2}\right)_{3} \mathrm{Cl}_{3}$

By Ö. Bekaroglu and S. SArisaban
Technical University of Istanbul, Department of Chemistry, Macka, Istanbul, Turkey

and A. R. Koray, B. Nuber, K. Weidenhammer, J. Weiss and M. L. Ziegler* Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neunheimer Feld 270, 6900 Heidelberg, Federal Republic of Germany

(Received 30 May 1978, accepted 21 July 1978)

Monoclinic, $P 2_{1} / c, a=13.429$ (2), $b=15.831$ (2), $c=9.455$ (3) $\AA, \beta=115.63$ (2) ${ }^{\circ}$. There are four discrete formula units in the unit cell, forming a racemate. The $\mathrm{Co}^{\text {III }}$ atoms are octahedrally coordinated by the bidentate ligand. The structure was solved by Patterson and Fourier methods and refined by a least-squares procedure to $R=0.037$ for 4990 independent reflections.

Introduction

The compound under investigation has been synthesized by dissolving bis(oxamide oximato)cobalt(II)oxamide oxime, $\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \quad$ (I) (Bekaroglu, Sarisaban, Koray \& Kiegler, 1977), in water and recrystallizing the brown precipitate which appeared after 2 h from hydrochloric acid (Sarisaban, 1976). The possibly chelating ligand oxamide oxime ('diaminoglyoxime') recently received new interest when the X-ray structure determinations of (I) and bis(oxamide oximato)nickel(II)-water-dimethylformamide, $\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$ (II) (Endres, 1978), were reported. In the Co complex mentioned above the Co atom has a pseudooctahedral environment, being coordinated by four oxime N atoms of two chelating $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{2}^{-}$groups (OAOH) and one amino N of two adjacent complex molecules each. By this mechanism a chain polymer is formed. In contrast to the $\mathrm{Co}^{\mathrm{II}}$ complex, there are no interactions between the Ni central atom and amino N atoms of adjacent molecules, there being discrete square-planar $\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}$ units with DMF acting solely as a 'space filler'. We now report the X-ray structure determination of tris(oxamide oxime)cobalt(III) trichloride, $\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{3} \mathrm{Cl}_{3}$ (III), in which the oxamide oxime ligands are bonded in

[^0]a different way from that which has been reported for the Ni and Co complexes discussed above and also from that known for diacetyldioxime complexes.

Rotating-crystal and Weissenberg photographs (Cu Ka radiation) showed the crystal to be monoclinic and provided rough lattice constants. Exact lattice parameters could be calculated by the least-squares method (Berdesinski \& Nuber, 1966) from diffractometrically determined exact θ values of 75 selected reflections. Intensity measurements were performed on a computer-controlled single-crystal diffractometer (AED-Siemens, Mo $K \alpha, \quad \theta-2 \theta$ scans, five-value method) up to $2 \theta=69.98^{\circ}$. Reflections with an intensity less than 2.58 times the standard deviation were not considered. A total of 4990 observed independent intensities remained for calculations. They

Table 1. Crystal data

$\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{3} \mathrm{Cl}_{3}$	
Space group $P 2 / 1 / c$	$Z=4$
$\lambda(\mathrm{Mo} \mathrm{Ka})=0.7107 \AA$	$V=1812.30 \AA^{3}$
$a=13.429$ (2) \AA	$D_{o}=1.87 \mathrm{~g} \mathrm{~cm}^{-3}$
$b=15.831$ (2)	$D_{c}=1.881$
$c=9.455$ (3)	$F(000)=1060.00$
$\beta=115.63$ (2) ${ }^{\circ}$	FW 516.56
Systematic absences $\left\{\begin{array}{l}0 k 0: k=2 n+1 \\ h 0: l=2 n+1\end{array}\right.$	$\begin{aligned} & \mu(\mathrm{Mo} K \alpha)=7.84 \mathrm{~cm}^{-1} \\ & 69.977 \geq 2 \theta \geq 4.235^{\circ} \end{aligned}$
Crystal size: $0.4 \times 0.2 \times 0.2 \mathrm{~mm}$	Independent reflections:

Space group $P 2, / c$
$\lambda(\mathrm{Mo} \mathrm{Ka})=0.7107 \AA$
$a=13.429$ (2) \AA
$b=15.831$ (2)
$\beta=115.63$ (2) ${ }^{\circ}$
Systematic 0k0: $k=2 n+$
Crystal size: $0.4 \times 0.2 \times 0.2 \mathrm{~mm}$
$2=4$
$D_{0}=1.87 \mathrm{~g} \mathrm{~cm}^{-3}$
$D_{c}=1.881$
$F(000)=1060 \cdot 00$
FW $516 \cdot 56$
$69.977 \geq 2 \theta \geq 4$.
Independent reflections: 4990
were corrected for Lorentz and polarization factors only. Crystal data are listed in Table 1.

The positions of all non-hydrogen atoms were determined from a Patterson synthesis. Refinement with anisotropic temperature factors resulted in $R=0.054$, at which point a difference Fourier map enabled all the H atoms to be located. Their coordinates were refined

Table 2. Final atomic fractional coordinates (for Co , $\mathrm{Cl}, \times 10^{3}$, for $\mathrm{O}, \mathrm{N}, \mathrm{C}, \times 10^{4}$) of the non-hydrogen atoms

	x	y	z
Co	$75330(2)$	$49485(2)$	$51301(3)$
$\mathrm{Cl}(1)$	$73909(5)$	$43577(5)$	$00348(8)$
$\mathrm{Cl}(2)$	$43553(5)$	$25313(4)$	$12527(8)$
$\mathrm{Cl}(3)$	$00476(5)$	$29255(5)$	$80780(8)$
$\mathrm{O}(1)$	$3898(1)$	$1050(1)$	$9032(2)$
$\mathrm{O}(2)$	$-0091(1)$	$4717(1)$	$7084(2)$
$\mathrm{O}(3)$	$8736(1)$	$4052(1)$	$3608(2)$
$\mathrm{O}(4)$	$6174(1)$	$4096(1)$	$6449(2)$
$\mathrm{O}(5)$	$5221(1)$	$0352(1)$	$7719(2)$
$\mathrm{O}(6)$	$0993(1)$	$1208(1)$	$0308(2)$
$\mathrm{N}(1)$	$2208(2)$	$1524(2)$	$6347(3)$
$\mathrm{N}(2)$	$0060(2)$	$4112(2)$	$0903(3)$
$\mathrm{N}(3)$	$8096(2)$	$2457(1)$	$9177(3)$
$\mathrm{N}(4)$	$6488(2)$	$2403(2)$	$0456(3)$
$\mathrm{N}(5)$	$4641(2)$	$0856(1)$	$4110(2)$
$\mathrm{N}(6)$	$2506(2)$	$3317(2)$	$8038(3)$
$\mathrm{N}(7)$	$2839(2)$	$0772(1)$	$8711(2)$
$\mathrm{N}(8)$	$1098(1)$	$4991(1)$	$3016(2)$
$\mathrm{N}(9)$	$7979(2)$	$4020(1)$	$4246(2)$
$\mathrm{N}(10)$	$6957(2)$	$0974(1)$	$0857(2)$
$\mathrm{N}(11)$	$3813(2)$	$4879(1)$	$6736(2)$
$\mathrm{N}(12)$	$1982(2)$	$0775(1)$	$0899(2)$
$\mathrm{C}(1)$	$2077(2)$	$1006(2)$	$7350(3)$
$\mathrm{C}(2)$	$0996(2)$	$0617(2)$	$7038(3)$
$\mathrm{C}(3)$	$7751(2)$	$3260(2)$	$4535(3)$
$\mathrm{C}(4)$	$7015(2)$	$3277(2)$	$5344(3)$
$\mathrm{C}(5)$	$3797(2)$	$0673(2)$	$2745(3)$
$\mathrm{C}(6)$	$2704(2)$	$3914(2)$	$7222(3)$

Table 3. Final atomic fractional coordinates $\left(\times 10^{3}\right)$ of the hydrogen atoms

	x	y	z
$\mathrm{H}(1)$	$409(3)$	$351(3)$	$477(4)$
$\mathrm{H}(2)$	$999(3)$	$094(2)$	$246(5)$
$\mathrm{H}(3)$	$834(3)$	$082(3)$	$769(5)$
$\mathrm{H}(4)$	$655(3)$	$075(3)$	$237(5)$
$\mathrm{H}(5)$	$505(3)$	$045(2)$	$850(4)$
$\mathrm{H}(6)$	$050(3)$	$421(2)$	$487(5)$
$\mathrm{H}(11)$	$286(3)$	$323(3)$	$152(5)$
$\mathrm{H}(12)$	$166(3)$	$338(3)$	$039(5)$
$\mathrm{H}(21)$	$003(3)$	$359(3)$	$040(4)$
$\mathrm{H}(22)$	$939(3)$	$434(3)$	$085(5)$
$\mathrm{H}(31)$	$868(3)$	$241(3)$	$882(4)$
$\mathrm{H}(32)$	$794(3)$	$202(3)$	$450(4)$
$\mathrm{H}(41)$	$663(3)$	$206(3)$	$516(4)$
$\mathrm{H}(42)$	$588(3)$	$234(3)$	$076(4)$
$\mathrm{H}(51)$	$531(3)$	$066(3)$	$431(5)$
$\mathrm{H}(52)$	$455(3)$	$122(3)$	$478(5)$
$\mathrm{H}(61)$	$304(3)$	$310(3)$	$896(4)$
$\mathrm{H}(62)$	$178(3)$	$193(3)$	$264(4)$

independently with isotropic thermal parameters equivalent to that of $\mathrm{H}(1)\left(B=4.54 \AA^{2}\right)$; the final R was 0.037 and R_{w} was 0.039 .*

All calculations were performed on Siemens 301 (Anorg. Chem. Institut, Heidelberg) and IBM 370/168 (Universitätsrechenzentrum Heidelberg) computers with local versions of the XRAY system (Stewart, Kundell \& Baldwin, 1970). Scattering factors were those of Hanson, Herman, Lea \& Skillman (1964). Atomic coordinates of the non-hydrogen atoms are listed in Table 2, those of the H atoms in Table 3. The atom-numbering scheme is that in Fig. 1.

Discussion

Fig. 1 shows a stereoscopic view of one of the four molecules in the unit cell. The interatomic distances and the bond angles of (III) are listed in Tables 4 and 5. There is one independent molecule in the unit cell, Z being 4. The Co atom has the oxidation number +3 , octahedrally coordinated by three neutral oxamide oxime $\left(\mathrm{OAOH}_{2}\right)$ ligands. Because of this, the complex cation must exhibit optical activity. The space group $P 2_{1} / c$ implies the presence of a racemate.

The chelate ligands are bonded via the oxime N atoms. The interesting feature is that the ligands are bonded as neutral ligands. This is quite contrary to the situation in (I) (Bekaroglu, Sarisaban, Koray \& Ziegler, 1977) and (II) (Endres, 1978), where the coordinating species are the anions OAOH^{-}. The positive charge at the $\mathrm{Co}^{\mathrm{III}}$ cation is equalized by the three Cl^{-}ions.
$\mathrm{Co}-\mathrm{N}$ (oxime) bond distances in (III) are longer than those in the $\mathrm{Co}^{\text {II }}$ case, in accordance with the greater steric requirements in the former. The other distances

[^1]

Fig. 1. Stereoview of $\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{3} \mathrm{Cl}_{3}$. 50% probability ellipsoids are displayed.

Table 4. Bond lengths (\AA)

$\mathrm{Co}-\mathrm{N}(7)$	$1.903(2)$	$\mathrm{N}(2)-\mathrm{H}(21)$	$0.96(5)$
$\mathrm{Co}-\mathrm{N}(8)$	$1.917(2)$	$\mathrm{N}(2)-\mathrm{H}(22)$	$0.96(5)$
$\mathrm{Co}-\mathrm{N}(9)$	$1.911(2)$	$\mathrm{N}(4)-\mathrm{H}(41)$	$0.93(6)$
$\mathrm{Co}-\mathrm{N}(10)$	$1.913(2)$	$\mathrm{N}(6)-\mathrm{H}(61)$	$0.93(4)$
$\mathrm{Co}-\mathrm{N}(11)$	$1.922(2)$	$\mathrm{N}(6)-\mathrm{H}(62)$	$0.98(4)$
$\mathrm{Co}-\mathrm{N}(12)$	$1.905(2)$	$\mathrm{O}(1)-\mathrm{O}(4)$	$2.929(2)$
$\mathrm{N}(9)-\mathrm{C}(3)$	$1.299(3)$	$\mathrm{Cl}(1)-\mathrm{O}(3)$	$3.103(2)$
$\mathrm{C}(5)-\mathrm{N}(5)$	$1.330(3)$	$\mathrm{Cl}(3)-\mathrm{O}(2)$	$2.968(2)$
$\mathrm{C}(6)-\mathrm{N}(6)$	$1.318(4)$	$\mathrm{N}(8)-\mathrm{O}(2)$	$1.392(3)$
$\mathrm{N}(1)-\mathrm{H}(11)$	$0.91(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.488(4)$
$\mathrm{N}(1)-\mathrm{H}(12)$	$0.90(4)$	$\mathrm{C}(3)-\mathrm{N}(9)$	$1.299(3)$
$\mathrm{N}(3)-\mathrm{H}(31)$	$0.98(6)$	$\mathrm{C}(3)-\mathrm{N}(3)$	$1.325(4)$
$\mathrm{N}(5)-\mathrm{H}(51)$	$0.90(5)$	$\mathrm{C}(4)-\mathrm{N}(4)$	$1.317(4)$
$\mathrm{N}(5)-\mathrm{H}(52)$	$0.90(5)$	$\mathrm{C}(4)-\mathrm{N}(10)$	$1.297(3)$
$\mathrm{O}(3)-\mathrm{O}(6)$	$2.779(2)$	$\mathrm{N}(10)-\mathrm{O}(4)$	$1.393(3)$
$\mathrm{O}(1)-\mathrm{O}(5)$	$2.800(3)$	$\mathrm{C}(5)-\mathrm{N}(11)$	$1.301(3)$
$\mathrm{Cl}(2)-\mathrm{O}(1)$	$3.027(2)$	$\mathrm{O}(6)-\mathrm{N}(12)$	$1.381(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.484(4)$	$\mathrm{O}(1)-\mathrm{H}(1)$	$0.95(4)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.321(4)$	$\mathrm{O}(2)-\mathrm{H}(2)$	$1.11(4)$
$\mathrm{C}(1)-\mathrm{N}(7)$	$1.304(3)$	$\mathrm{O}(3)-\mathrm{H}(3)$	$0.81(4)$
$\mathrm{C}(2)-\mathrm{N}(2)$	$1.323(3)$	$\mathrm{O}(5)-\mathrm{H}(5)$	$0.88(5)$
$\mathrm{C}(2)-\mathrm{N}(8)$	$1.300(3)$	$\mathrm{O}(6)-\mathrm{H}(6)$	$0.90(4)$
$\mathrm{N}(7)-\mathrm{O}(1)$	$1.391(3)$	$\mathrm{O}(2)-\mathrm{O}(3)$	$2.927(3)$
$\mathrm{N}(9)-\mathrm{O}(3)$	$1.389(3)$	$\mathrm{Cl}(1)-\mathrm{O}(4)$	$3.089(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.483(3)$		

within the chelate rings of (III) are in agreement with those in (II). The $\mathrm{C}-\mathrm{N}$ (amino) bond distances in (III) are distinctly shorter than in (II). This could be partly explained by the interaction of two of the amino N atoms with the Co atoms of the adjacent molecules causing a chain-like structure in (II). In any case the delocalization seems to be stronger in (III) than in (II). The three five-membered rings are planar, the amino N atoms being in the planes, within the standard deviations. Two of the angles between the plane normals of the three chelate rings are close to 90° but one deviates considerably, being only 80°. This might be because of intramolecular hydrogen bonding, this view being supported by some $\mathrm{O}-\mathrm{O}$ distances [Table 4; $O(3)-O(6), O(1)-O(4), O(2)-O(3)$ and $O(1)-O(5)]$. They fit well within the range given in the literature (Wells, 1975) for $\mathrm{O}-\mathrm{H}-\mathrm{O}$ interactions ($2 \cdot 40-2 \cdot 90 \AA$).

Unsymmetric hydrogen bridges to the Cl^{-}anions are also indicated by some relatively short $\mathrm{O}-\mathrm{Cl}$ distances [Table 4; $\mathrm{Cl}(1)-\mathrm{O}(3), \mathrm{Cl}(1)-\mathrm{O}(4), \mathrm{Cl}(2)-\mathrm{O}(1)$ and $\mathrm{Cl}(3)-\mathrm{O}(2)$]; the range for $\mathrm{O}-\mathrm{H}-\mathrm{Cl}$ interactions has been found to be within $2 \cdot 92-3 \cdot 04 \AA$ (Wells, 1975).

Table 5. Bond angles $\left({ }^{\circ}\right)$

$\mathrm{N}(9)-\mathrm{Co}-\mathrm{N}(8)$	94.60 (8)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(10)$	(2)
$\mathrm{N}(9)-\mathrm{Co}-\mathrm{N}(12)$	93.63 (10)	$\mathrm{Co}-\mathrm{N}(9)-\mathrm{O}(3)$	$126 \cdot 1$ (2)
$\mathrm{N}(8)-\mathrm{Co}-\mathrm{N}(7)$	79.99 (8)	$\mathrm{Co}-\mathrm{N}(10)-\mathrm{O}(4)$	125.2 (2)
$\mathrm{N}(11)-\mathrm{Co}-\mathrm{N}(7)$	$93 \cdot 12$ (8)	$\mathrm{N}(5)-\mathrm{C}(5)-\mathrm{N}(11)$	125.5 (2)
$\mathrm{N}(7)-\mathrm{Co}-\mathrm{N}(12)$	93.25 (10)	$\mathrm{N}(6)-\mathrm{C}(6)-\mathrm{N}(12)$	125.4 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	122.5 (2)	$\mathrm{Co}-\mathrm{N}(11)-\mathrm{C}(5)$	117.5 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	122.0 (2)	$\mathrm{Co}-\mathrm{N}(12)-\mathrm{C}(6)$	118.3 (2)
$\mathrm{C}(1)-\mathrm{N}(7)-\mathrm{O}(1)$	114.6 (2)	$\mathrm{N}(8)-\mathrm{O}(2)-\mathrm{H}(2)$	107 (3)
$\mathrm{Co}-\mathrm{N}(8)-\mathrm{O}(2)$	124.4 (2)	$\mathrm{N}(9)-\mathrm{O}(3)-\mathrm{H}(3)$	102 (4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(9)$	111.2 (2)	$\mathrm{N}(9)-\mathrm{Co}-\mathrm{N}(11)$	171.36(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(4)$	121.8 (2)	$\mathrm{N}(8)-\mathrm{Co}-\mathrm{N}(11)$	168.91 (14)
$\mathrm{Co}-\mathrm{N}(9)-\mathrm{C}(3)$	118.2 (2)	$\mathrm{N}(8)-\mathrm{Co}-\mathrm{N}(10)$	94.96 (8)
$\mathrm{Co}-\mathrm{N}(10)-\mathrm{C}(4)$	117.7 (2)	$\mathrm{N}(11)-\mathrm{Co}-\mathrm{N}(10)$	94.16 (9)
$\mathrm{N}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	122.2 (2)	$\mathrm{N}(12)-\mathrm{Co}-\mathrm{N}(10)$	171.00 (8)
$\mathrm{N}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	122.8 (2)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(7)$	126.4 (2)
$\mathrm{Co}-\mathrm{N}(11)-\mathrm{O}(5)$	128.3 (2)	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{N}(8)$	$126 \cdot 0$ (2)
$\mathrm{Co}-\mathrm{N}(12)-\mathrm{O}(6)$	128.0 (2)	$\mathrm{O}(1)-\mathrm{N}(7)-\mathrm{Co}$	$126 \cdot 1$ (1)
$\mathrm{N}(7)-\mathrm{O}(1)-\mathrm{H}(1)$	109 (3)	$\mathrm{O}(2)-\mathrm{N}(8)-\mathrm{C}(2)$	113.4 (2)
$\mathrm{N}(11)-\mathrm{O}(5)-\mathrm{H}(5)$	110 (3)	$\mathrm{N}(9)-\mathrm{C}(3)-\mathrm{N}(3)$	126.8 (3)
$\mathrm{N}(9)-\mathrm{Co}-\mathrm{N}(11)$	93.21 (9)	$\mathrm{N}(4)-\mathrm{C}(4)-\mathrm{N}(10)$	126.6 (3)
$\mathrm{N}(9)-\mathrm{Co}-\mathrm{N}(10)$	79.76 (10)	$\mathrm{C}(3)-\mathrm{N}(9)-\mathrm{O}(3)$	114.1 (2)
$\mathrm{N}(8)-\mathrm{Co}-\mathrm{N}(12)$	91.63 (9)	$\mathrm{C}(4)-\mathrm{N}(10)-\mathrm{O}(4)$	113.6 (2)
$\mathrm{N}(11)-\mathrm{Co}-\mathrm{N}(12)$	80.02 (8)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(11)$	112.3 (2)
$\mathrm{N}(7)-\mathrm{Co}-\mathrm{N}(10)$	93.92 (10)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(12)$	111.8 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(7)$	111.1 (2)	$\mathrm{O}(5)-\mathrm{N}(11)-\mathrm{C}(5)$	113.5 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(8)$	111.9 (2)	$\mathrm{O}(6)-\mathrm{N}(12)-\mathrm{C}(6)$	112.7 (2)
$\mathrm{C}(1)-\mathrm{N}(7)-\mathrm{Co}$	118.3 (2)	$\mathrm{N}(12)-\mathrm{O}(6)-\mathrm{H}(6)$	101 (3)
$\mathrm{Co}-\mathrm{N}(8)-\mathrm{C}(2)$	116.8 (2)	$\mathrm{N}(10)-\mathrm{O}(4)-\mathrm{H}(4)$	102 (4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(3)$	122.0 (2)		

The amino N atoms are certainly $s p^{2}$ hybridized; this is established by the sum of the bond angles at these N atoms, ranging from $356-360^{\circ}$.

This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

References

Bekaroglu, Ö., Sarisaban, S., Koray, A. R. \& Ziegler, M. L. (1977). Z. Naturforsch. Teil. B, 32, 387-392.

Berdesinsk1, W. \& Nuber, B. (1966). Neues Jahrb. Mineral. Abh. 104, 113-146.
Endres, H. (1978). Acta Cryst. B34, 2306-2309.
Hanson, H., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Sarisaban, S. (1976). PhD Thesis, Technical Univ., Istanbul.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., p. 304. Oxford: Clarendon Press.

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33833 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

